

Prodigy ECC Eclipse Cuber Technical Training Includes Prodigy Plus

In This Presentation

- What the ECC Eclipse is
- Components and their functions
- Installation
- Operation
- Maintenance
- Service Diagnosis

The New Eclipse System

- Two main components per system:
 - EH Head Unit 115 volt
 - ECC condensing unit 208-230 volt
- Several systems for different applications
 - 3 ice making heads
 - 4 condensing units
 - 5 capacity systems

What's New - Prodigy Plus

Panels

- Front pulls out at bottom
- Indicator lights and switch access at bottom front

Controller

- Connects to lower light and switch panel
- New part number, new service controller will work on any Prodigy cuber
- Cleaning process one button push
 - No longer has to empty sump to add water

ECC is a complete condensing unit

- ECC condensing unit no condenser to assemble
- No quick connects condensing unit has ball valves and stubs
- EH "C and D" heads have stubs, no quick connects
 - Shipped with nitrogen, stubs have plugs
 - Line sets are shortened to fit site
 - Brazed to stubs on condensing unit and head
 - Head and line sets evacuated from condensing unit ball valves
 - Ball valves opened to release charge

Prodigy Eclipse Heads - Capacity

Platforms

- 30" wide, 29" tall head
 - EH430 D 1800 lb with ECC1800
 - EH430 D 1400 lb with ECC1410
- 30" wide, 23" tall head
 - EH330 D 1200 lb with ECC1200
- 22" wide head
 - EH222 D 1000 lb with ECC1410
 - EH222 D 800 lb with ECC0800

Ice Making Section – the Head

- Remote Low Side Heads
- EH222 D
 - 22" wide by 16.5" deep
- EH330 D, EH430 D
 - 30" wide by 24" deep
 - EH430 is 29" high
 - EH330 is 23" high

EH222

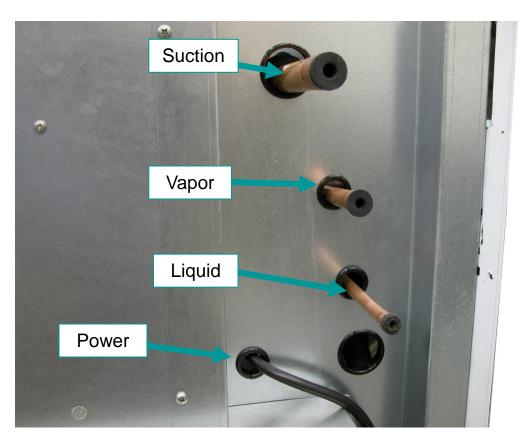
EH330, EH430

EH222 Head

- Nitrogen charge
- Refrigerant Tube Connections
 - Vapor
 - Liquid
 - Suction
- Connections at center of the back of the top panel

Vapor Water Inlet

Liquid


Suction

Control Cable Connector

EH330 C, EH430 C Heads

- Refrigerant Tube
 Connections
 - Vapor
 - Liquid
 - Suction
- Connections at the back of the cabinet
 - Tubing can route up or back

EH222 Head

- Ice making compartment
 - One evaporator faces front
 - Controller in front curtain

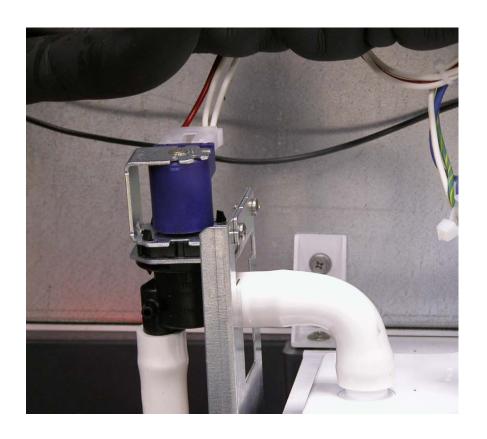
EH330, EH430 Head

- Ice making compartment
 - Two evaporators face each other
 - Two expansion valves
 - Two vapor valves
- Vari-Smart ice level control system is a field installed option

Vapor Inlet Valve – in Head

- Purpose: Opens during harvest to allow vapor to enter the evaporators
- 115 volt coil
- One per evaporator

Harvest Assist Mechanism


- Purpose: Adds extra force to back of ice to aid in harvest
- One per evaporator
- 115 volt motor

Purge Valve

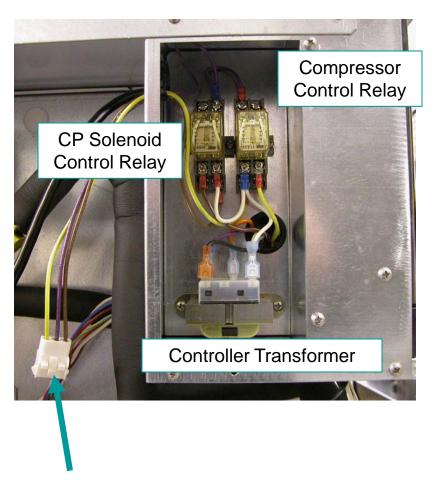
- 115 volt coil
- Opens to drain the reservoir during harvest
 - Do not use ohmmeter to check for continuity on this coil, will give false open reading

Inlet Water Solenoid Valve

- Purpose: Opens to add water and fill reservoir
 - Fills at beginning of freeze
 - Should only fill once per cycle
 - Can add water anytime the water level sensor mid probe is dry
 - 115 volt coil

Controller

- AutoAlert external indicator lights
 - Indicate power, status,
 water availability and need
 for maintenance
- WaterSense adaptive purge control
 - Automatically selects the proper water purge level based on local water conditions

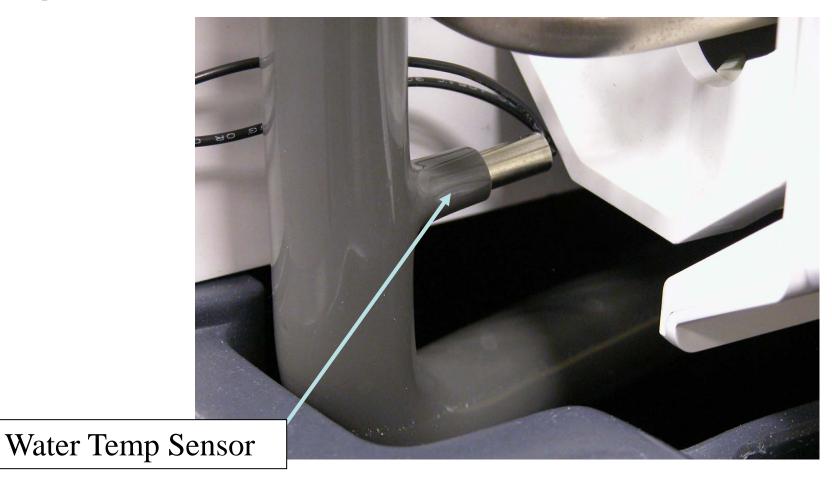


Electrical Box

- Two relays to operate the condensing unit
 - Compressor contactor
 - Solenoids
- Control wire connection nearby
 - Wire routes to compressor package
 - Controls contactor and solenoid valves

Control Wire Connection

EH222 Freezing Compartment


Curtain Switch

- EH222 C located to the left of the curtain
- When curtain is open, switch is open.
 - Curtain switch indicator light on controller will be ON when open.
 - EH222 will always have one curtain switch light on.

Temperature Sensor

Vari-Smart / KVS

Adjustable ice level

Standard on EH222

Optional on all others

Adjustment Knob

Condensing Unit

• Includes

- Coil
- Compressor
- Receiver
- Accumulator
- Fan and motor
- Control box w/ transformer
- Head master
- Bypass valve
- Liquid inlet valve

Condensing Unit

Condensing Unit

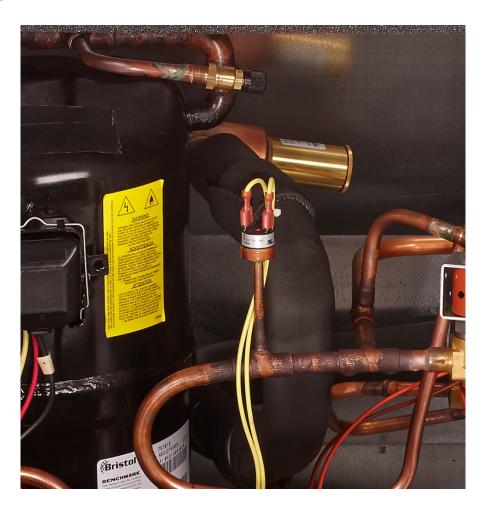
High Pressure Cut
Out - Auto Reset

Headmaster

CPR Valve

Low Side Access Valve

Condenser Bypass Valve

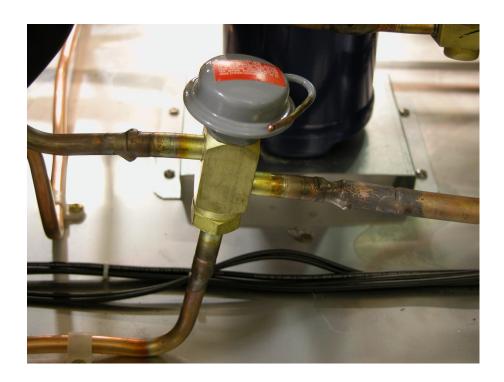

Receiver

Communication Cable, ships with condensing unit

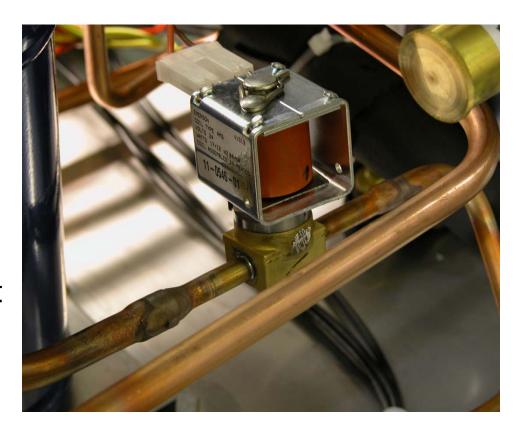
Crankcase Pressure Regulator

- CPR valve restricts compressor dome pressure during harvest
 - 55 to 60 PSIG
 - Pre-set don't adjust it!

Condenser Bypass Valve


- Normally Closed, opens during harvest
- Bypasses condenser coil and directs discharge gas to vapor line

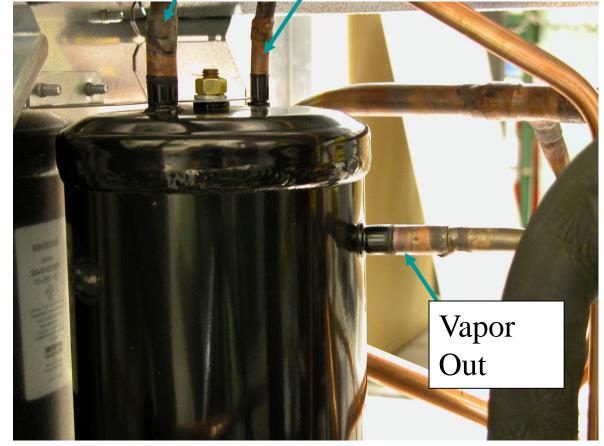
Headmaster – Discharge Pressure Control


- Maintains discharge pressure during freeze
- Active at any temp below 70°F.
 - Rated at 217 PSIG, freeze cycle pressure may be between 220 and 230 during cold ambient operation

Liquid Inlet Valve

- Normally Open, closes during harvest
- Controls liquid flow into receiver
- Isolates refrigerant in condenser during harvest
- Improves cycle time

Receiver


Shipped with system

charge

- Three ports
 - Liquid inlet
 - Liquid outlet
 - Vapor outlet

Liquid Inlet

Liquid Out

Electrical Box

Toggle Switch

- Transformer to power EH relays
- Toggle switch controls condensing unit
- Control Wire connection from EH to control the system
- Electrical power connected at contactor

Transformer

Control Wire Connection

System Installation

 Must match components to create system

22" System Combos

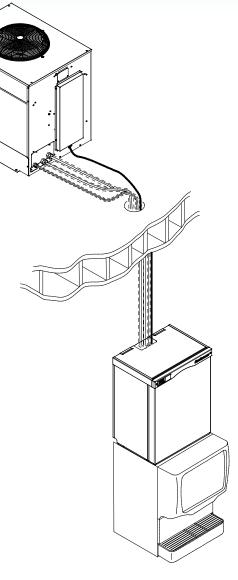
- 800 -
 - EH222, ECC0800
- 1000 -
 - EH222, ECC1410

23" tall 30" wide System Combos

- 1200 -
 - EH330, ECC1200

High Capacity 30" System Combos

- 1400 -
 - EH430, ECC1410
- 1800 -
 - EH430, ECC1800



Equipment Location

 Head can be above or below condensing unit

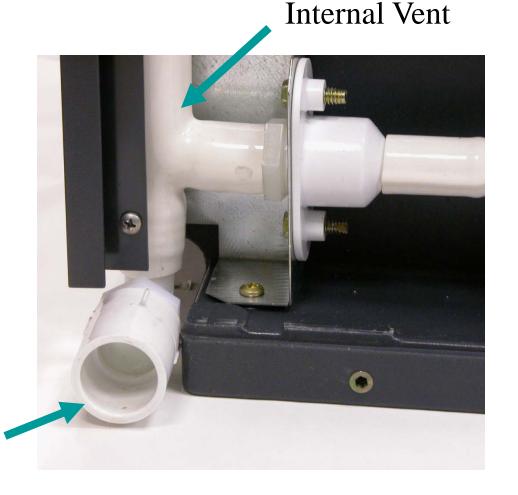
Limit is 15' above or 35' below the CP

- Line Sets
 - 3BRTE20, 35, 50 or 75 EH
 - No extra refrigerant charge required
 - S trap in suction tube required when condensing unit is over 20' above ice making head
- Must have bin or dispenser adapter for the EH222 head

Line Set Installation

- Route lines in two groups
 - Liquid and Vapor
 - Suction separately for ease of routing
 - 3/4" tube requires careful handling
 - Route control wire with line set
 - Must shorten at site
 - No need to loop extra tubing

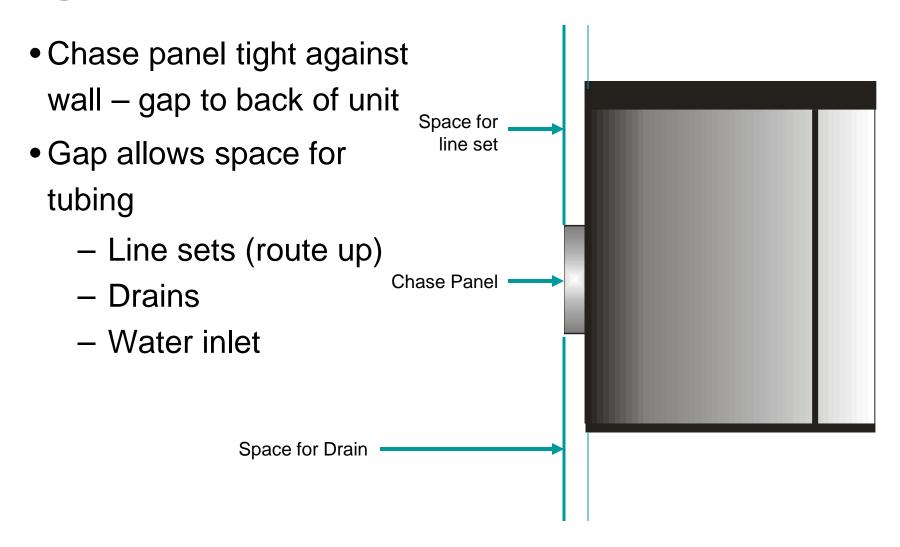
Install Head


- Against wall capability
 - EH222 fully flush
 - EH330, EH430 limited by chase panel
- Drains left, right or back
- Water inlet and power inlet from the top or back
- Refrigerant line connections back or top
- 115 volt unit, cord provided

Flush Installations - EH222

- Attach water inlet
 - 3/8" union flare ships in hardware package
- Attach drain 3/4"
 - EH222 ships with drain hose fitting attached
 - EH222 no vent required, vent is internal

Drain Fitting Rotates to left, right or back.

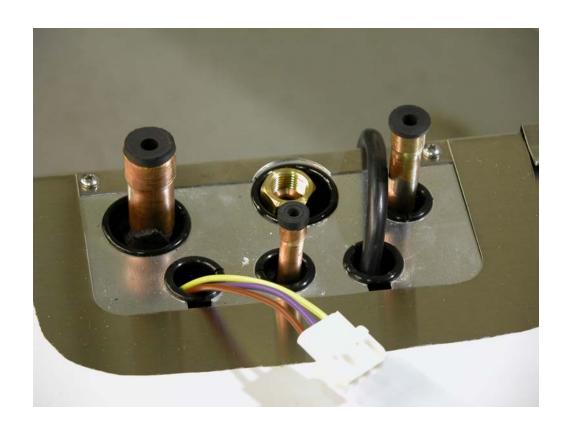

EH222 - Place on Adapter

- Many different adapters
 - Gasket tape at mounting area
- Remove all panels
- Place unit
- Connect control wire


Tight Installations – EH330 or EH430

Condensing Unit

- Connect refrigerant lines
- Connect control wire
- Connect power, check voltage



Head Connections

- Connect refrigerant lines
- Connect control wire
- Connect water and drain
- Plug in power cord

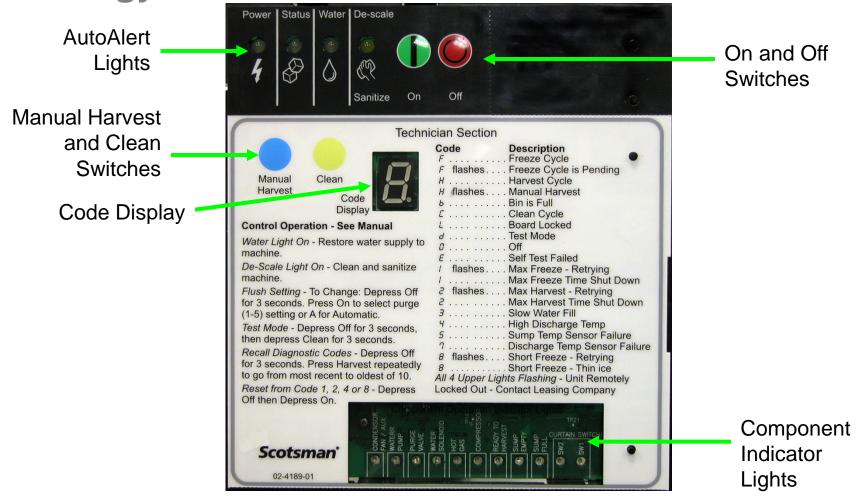
Tubing Transition

- Until inventory of prior heads, CPs and line sets are installed
- Line set modifications may be needed
 - Cut off quick connects to braze to stubs
 - Add quick connects to new line sets if head or CP has them
 - KTE6-EH has 6 quick connect fittings on stubs

Connect Tubing

- Route the refrigerant lines
- Cut to length
- Braze to condensing unit and head
- Evacuate head and lines
 - Connect manifold to access valves on ball valves
 - Remove cores for faster evacuation
- Open ball valves

Nitrogen Purge and Evacuation


- Purge nitrogen thru system when brazing
- Purge low pressure dry nitrogen (1 PSI)
 - At Head vent ½" Vapor line
 - At CU source nitrogen to 3/8" Liquid and ½" Vapor lines
 - Evacuate sealed tubing & head from ball valve Schraders
 - Remove cores for fastest evacuation
 - All three connections at once or
 - Vapor and suction together

Refrigeration Schematic CPR Condenser, Head Master By Pass Valve Liquid Inlet Valve Check Valve — **Suction Line** Compressor Interconnecting Tubing **Ball Valves TXV** Accumulator Receiver Evaporator Vapor Liquid Line Vapor Valve

Scotsman

Prodigy Controller

Initial Start Up

- Check installation
 - Power
 - Water
 - Drain
 - Tube Routing
- No soak out needed
 - Plug in head unit
 - Push On to start

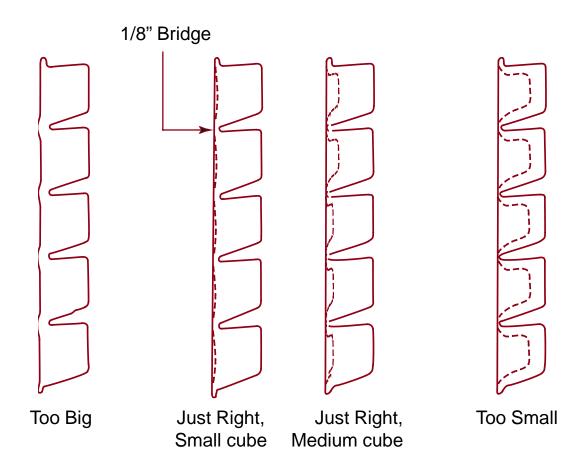
Start Up

EH head unit

- Drains reservoir (pump and purge valve on)
- Fills with water
- Switches on Pump
- Switches on Condensing Unit
 - Compressor and fan begin to operate

Adjustments

- Controller is factory set to automatically adjust purge level
- Bridge thickness is also factory set


Control Details

- Ice Thickness Sensor
 - Same on all Prodigy
 - Continuity probe
 - As the ice grows during freeze, the water flowing over it gets closer to the probe.
 - When water touches it for a few seconds, the freeze cycle ends.

Ice Bridge

Operation - Control System

- Prodigy control system
 - Water level sensor for
 - Reservoir water fill and empty
 - Ice Thickness Sensor to sense
 - End of freeze cycle
 - Curtain switch to sense
 - End of harvest
 - Bin full
 - Water temperature sensor for anti-slush process

Operation - Freeze

Compressor: ON

Water pump: ON

• Fan motor: ON

Purge valve: OFF

Inlet water solenoid: OFF

Harvest assist: OFF

Vapor valves:

Receiver inlet solenoid valve: OFF, but Open

Operation - Harvest

Compressor: ON

• Water pump: ON – will switch Off

• Fan motor: ON

Purge valve: ON – will switch Off

• Inlet water solenoid: ON – will switch Off

Harvest assist: ON

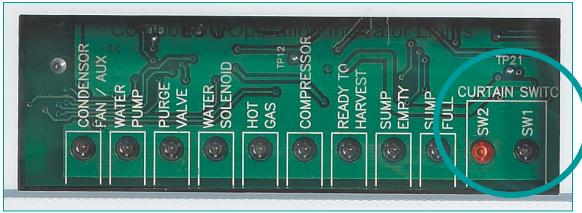
Vapor valves: ON

Receiver inlet valve: ON and closed

Operation - Harvest Details

- Vapor inlet valve opens, harvest assist powered
- Condenser bypass valve opens
- Receiver inlet valve closes
- Reservoir is drained per the purge setting and refills.
 - Pump and purge valve are ON
 - Pump stops, purge valve closes
 - Reservoir refills thru inlet water solenoid valve
 - Water valve shuts off when reservoir is full
- Harvest continues until the curtain switch opens
 - EH430 and EH330 must open both curtain switches

Control Details


- Water level sensor
 - Three probes
 - Short
 - Mid-length
 - Long
 - Mid-length probe is dry
 - Sump empty, water refills
 - Short probe is wet
 - Sump full, water stops refilling

Control Details

- Curtain Switch
 - Magnetic reed switch
 - Open when curtain is open
 - Check with indicator light or ohmmeter

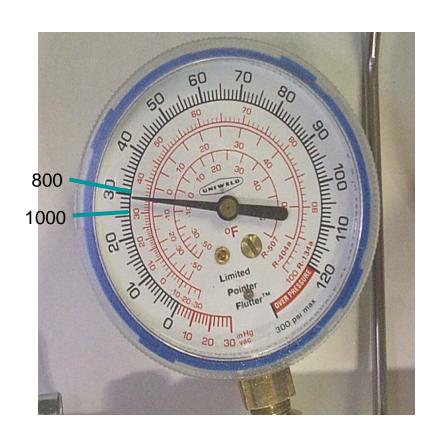
EH222 Operation

- Freeze Cycle Time:
- 70/50
 - 1000 8 to 9 minutes
 - 800 10 to 12 minutes
- 90/70
 - 1000 between 10 and 11 minutes
 - 800 between 13 and 15 minutes
- Harvest Cycle Time
 - 1000 between 1 and 1.5 minutes
 - 800 between 1 and 1.5 minutes

EH330 Operation

- Freeze Cycle Time:
 - 9 to 11 minutes at 70/50
 - 12 to 14 minutes at 90/70
- Harvest Cycle Time
 - 30 to 90 seconds

EH430 Operation


- Freeze Cycle Time:
 - **1400**
 - 70/50 14 to 15 minutes
 - 90/70 16 to 17 minutes
 - -1800
 - 70/50 10 to 12 minutes
 - 90/70 12 to 14 minutes
- Harvest Cycle Time
 - between 1 and 1.5 minutes

System Pressures – EH222

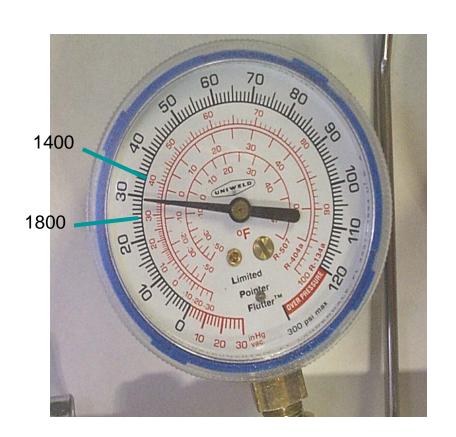
Freeze Cycle

- Normal ranges vary by capacity and ambient
- At 70/50:
 - 1000 lb finishes at about 28 PSIG
 - 800 lb finishes at about 30 PSIG
 - Will be slightly higher in higher ambient
- Pressures at CP unit and head are equal during Freeze

System Pressures – EH330

Freeze Cycle

- Normal ranges vary by ambient
- Finishes cycle at:
 - 30 PSIG at 70/50
 - 32 PSIG at 90/70
 - 37 PSIG at 120/100
- Pressures at CP unit and head are equal during Freeze



System Pressures – EH430

Freeze Cycle

- Normal ranges vary by capacity and ambient
- At 70/50:
 - 1800 lb finishes at about 25 PSIG
 - 1400 lb finishes at about 35 PSIG
 - Will be slightly higher in higher ambient
- Pressures at CP unit and head are equal during Freeze

System Pressures

Harvest Cycle

- At the ice making section, low side pressure rapidly increases to 95 - 105 PSIG
 - At ball valve access
- At the CP unit compressor access valve, dome pressure is limited by the CPR valve to 55 - 60 PSIG during harvest

System Pressures

Condensing Unit

- Discharge during low ambient freeze will be about 225 PSIG
 - Headmaster rated for 217, there is some variation unit to unit
- Discharge during harvest will be about 100 PSIG
- High Pressure Cut Out opens at 450, closes at 350 PSIG

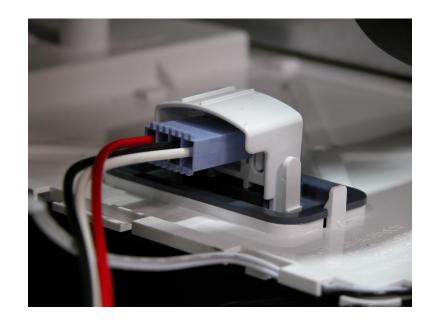

Isolate Head

- Unplug liquid line solenoid valve coil
 - Will trip on high discharge if not unplugged
- Shut off liquid & vapor ball valves
- Switch unit into Manual Harvest
- Shut suction ball valve and condensing unit OFF when suction pressure at ball valve reaches 0 PSIG
 - May need to recover residual refrigerant from head and tubing
- Be SURE to reconnect liquid line solenoid when restarting.

Maintenance

- De-lime with
 Scotsman Clear 1 Ice
 Machine Scale
 Remover
- Check distributor for scale build up

Cleaning Cycle


- Push Clean to start
- Add scale remover when Pump and Purge Valve lights are OFF.
- Circulate scale remover
- Push Clean again
- After 20 minutes push OFF.

Cleaning Tip

- Cleaning mode water fill
 - Water will NOT flow in if Sump Empty light is not on in the first 2 minutes of the Clean mode
 - Cause: Water sensor too low in sump,
 - Fix: Lift up slightly before starting cleaning, snap back down when complete

Water Level Sensor

- Sump Full light ON, but no water in reservoir - Code 2 displayed.
- Cause: dirty sensor
 - Solution: clean sensor
 - Release probes from housing
 - Clean housing thoroughly
 - Housing is the insulator

To Release: Push pin in, pull probe down

Key Area to Clean

Clean the Spillway

- Prodigy Code 8
 - Primary cause is erratic water flow from spillway
 - Spillway surface needs scrubbing

Code 8 – Water Flow Correction

- Lightly sand or scrub the spillway across the flow of water
 - Evens out water flow
 - Reduces splash onto ice thickness sensor probe

Code Display

- Letter codes show operational status
- Number codes show shut down causes

Technician Section

Code	Description
F	Freeze Cycle
F flashes	Freeze Cycle is Pending
Н	
H flashes	Manual Harvest
ь	Bin is Full
E	Clean Cycle
L	Board Locked
d	Test Mode
8	Off
E	Self Test Failed
/ flashes	Max Freeze - Retrying
	Max Freeze Time Shut Down
∂ flashes	Max Harvest - Retrying
	Max Harvest Time Shut Down
3	
	High Discharge Temp
	Sump Temp Sensor Failure
	Discharge Temp Sensor Failure
8 flashes	Short Freeze - Retrying
All 4 Upper Lights Flashing - Unit Remotely	
8 flashes Short Freeze - Retrying 8 Short Freeze - Thin ice	

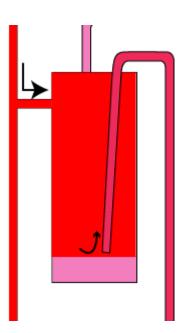
5 Controller Shut Down Causes

- Exceeds limit on maximum freeze time
 - 45 minutes (Code 1)
- Exceeds limit on maximum harvest time
 - 3.5 minutes (Code 2)
- End of freeze triggered too soon
 - Before 6 minutes into the freeze cycle (Code 8)
- Discharge temperature too high
 - Exceeds 250 degrees F. (Code 4) Not used in Eclipse
- · Exceeds limit on water fill time
 - 5 minutes (Code 3)

Controller Reaction

- Maximum freeze time (Code 1)
 - Completes harvest, tries another cycle
- Maximum harvest time (Code 2)
 - Shuts down, restarts after 50 minutes
- Minimum freeze (Code 8)
 - Completes timed harvest, tries another cycle.
- Discharge temperature exceeds 250 degrees F. (Code 4) Not used in Eclipse
 - Immediate shut down
- Maximum limit on water fill time (Code 3)
 - Shuts down, attempts refill every 20 minutes

- What happens if?
- Vapor Inlet Valve Does Not Open (in head)
 - Vapor line hot
 - Discharge pressure increases
 - Low side pressure not as high as normal 80
 - No or partial ice release
 - Code 2


Refrigeration Schematic CPR Condenser, Head Master ^{IJ}By Pass Valve Liquid Inlet Valve Check Valve — **Suction Line** Compressor Interconnecting Tubing **Ball Valves TXV** Accumulator Receiver Evaporator Vapor Liquid Line Vapor inlet Valve

- What happens if?
- Control wire becomes unplugged
 - Condensing unit does not operate
 - Exceeds maximum freeze time
 - Code 1

Eclipse Service Diagnosis

- What happens if?
- The condenser bypass valve leaks thru but head's vapor valve remains closed
 - Receiver fills with high pressure gas thru side port
 - High pressure gas in liquid line
 - Headmaster bypassing, also filling receiver
 - TXV bulb warm, valve open
 - High pressure in suction line to compressor
 - Hot bypass valve
 - Long freeze cycle code 1

Refrigeration Schematic CPR Condenser, **Head Master** By Pass Valve Liquid Inlet Valve Check Valve —— **Suction Line** Compressor Interconnecting Tubing **Ball Valves TXV** Accumulator Receiver Evaporator Vapor Liquid Line Vapor Valve

Scotsman

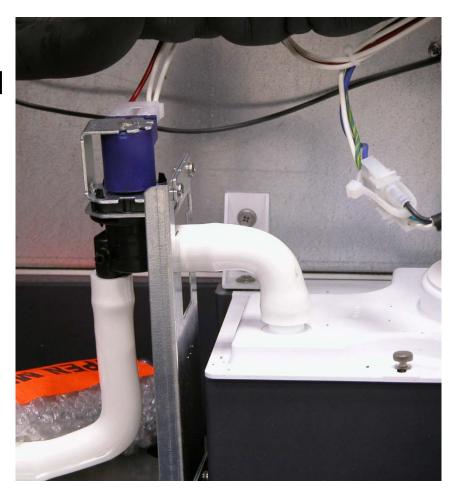
- What happens if?
- Condenser by pass valve does not open
 - High pressure cut out opens and closes
 - No ice release
 - Code 2

- What happens if?
- Headmaster is stuck in bypass
 - Very little liquid flow to TXVs
 - Long freeze cycle
 - Controller shows code 1

Refrigeration Schematic CPR Condenser, Head Master By Pass Valve Liquid Inlet Valve Check Valve — **Suction Line** Compressor Interconnecting Tubing **Ball Valves TXV** Accumulator Receiver Evaporator Vapor Liquid Line Vapor Valve

Scotsman

- What happens if?
- There is a refrigerant leak
 - No change until refrigerant level drops below the operational threshold for the ambient
 - Headmaster will try to maintain minimum discharge pressure - but will be hissing as gas flows through
 - Ice formation will be poor
 - Low capacity/long freeze cycle will result
 - Add charge to confirm, if ice making resumes with normal discharge pressure there is a leak


- What happens if?
 - TXV has high superheat?
 - Poor ice formation, ok at top of evaporator, thin in the middle
 - Similar to low refrigerant charge
 - TXV has low superheat?
 - Long freeze cycle

- What happens if?
- There is no water to the ice making section
 - Water is part of the recipe for ice!
 - Controller will stop unit operation but retry filling every
 20 minutes until water is restored

- What happens if?
- The purge valve leaks and drains the reservoir
 - Reservoir may refill during the freeze cycle
 - Thick ice at bottom of slab

- What happens if?
- The inlet water valve leaks through
 - Keeps adding water (heat load) to reservoir
 - Result is a long freeze cycle

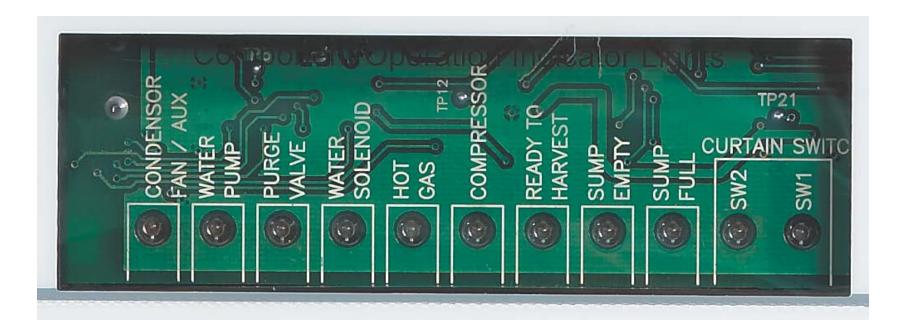
Control Button Processes

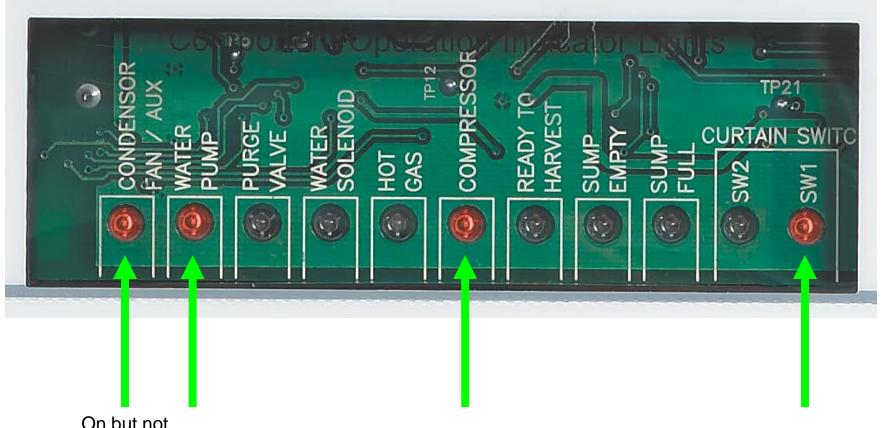
- Recall diagnostic code
 - Push and hold Off to shut down
 - Push and hold Off again until the display code changes
 - Push and release the Harvest button to cycle thru the last 10 diagnostic codes, from latest to oldest

Controller Button Processes

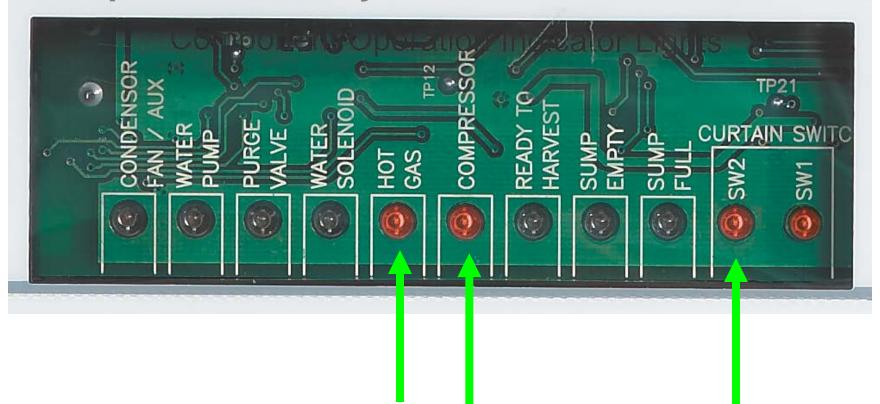
- Clear all diagnostic codes
 - Push and hold Off to shut the machine down

Push and hold both the Clean and Harvest


buttons for 3 seconds


Prodigy Diagnosis

 Use the controller's component indicator lights to check if a component is operating when it should be.


Example: Freeze Cycle

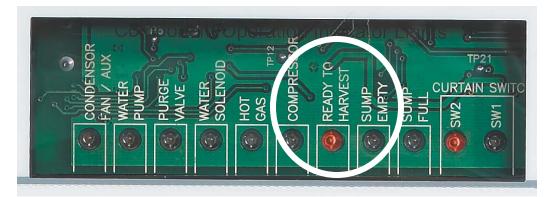
On but not used in Eclipse

Example: Harvest Cycle

- What happens if?
- The condenser fan stops
 - CP unit's hi pressure cut out will open
 - Maximum freeze time will be exceeded
 - Head's controller will shut system off
 - Controller will display code 1

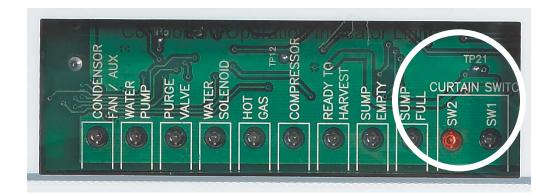
- What happens if?
- The CPR valve fails
 - Pressure during harvest will not be at the pre-set point
 - 55 to 60 PSIG
 - Will not hold an adjustment
 - No external symptom
- CPR setting should be checked if compressor is replaced

Service Diagnosis – Code 1


- What happened if?
- The controller displays code 1
 - Maximum freeze time exceeded
 - Dirty condenser coil
 - Fan motor inoperative
 - Hi discharge pressure caused compressor to shut off
 - No water over evaporator, no ice made
 - Lack of refrigerant, no ice made

Diagnostics - Sensors

- Ice thickness sensor
 - Continuity probe
 - Check by grounding metal tip to cabinet and observing Ready To Harvest light


Service Diagnosis – Code 2

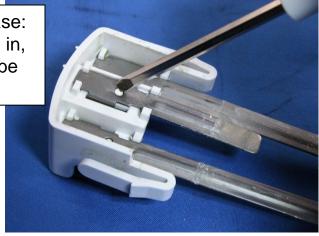
- What happened if?
- The controller displays code 2
 - Maximum harvest time exceeded
 - Vapor valves did not open
 - Curtain did not open
 - Ice too thin
 - Ice normal at top, thick on bottom

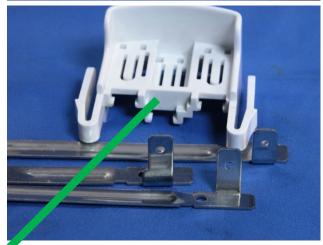
Diagnostic - Sensors

- Curtain Switch
 - Magnetic reed switch
 - Use indicator light or ohmmeter
 - When curtain is CLOSED, light is OFF
 - Single plate models have 1 light on all the time

Diagnostic – Water Level Sensor

Code 2

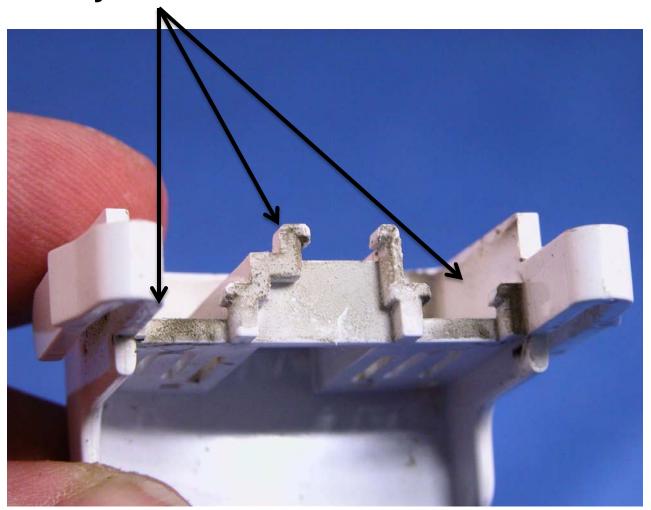

 Sump Full light ON, but no water in reservoir - Code 2 displayed.


• Cause: dirty sensor

- Solution: clean sensor

- Release probes from housing
- Clean housing thoroughly
 - Housing is the insulator

To Release: Push pin in, pull probe down

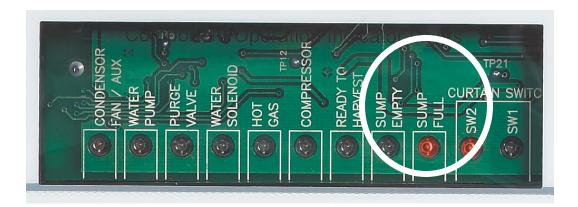


Key Area to Clean

Diagnostic – Water Level Sensor Key Area to Clean

Late 2011: New Water Level Sensor

- Guard Water level sensor probes shielded from water splash and separated from air upflow
 - Guard surrounds probes
 - Reduces false sump full signal
 - Reduces code 1 and 2 shut downs
- Applied to all Prodigy modular cubers
- Kits available:
 - Include sensor, harness, guard and sump cover


Service Diagnosis – Code 3

- What happened if?
- The controller displays code 3
- Slow or no water fill
 - Possible clogged water filters
 - Low water level leaks out
 - Water level sensor not working or harness connection poor

Diagnostic - Sensors

- Water Level Sensor
 - Continuity probe
 - Check by connecting two short probes
 - Sump full light should be On

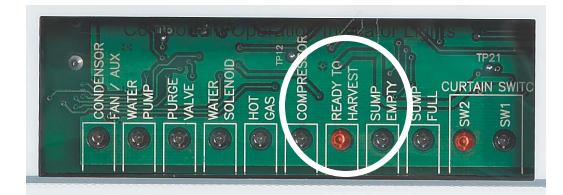
Service Diagnosis – Code 4,5 & 7

- What happened if?
- The controller displays code 4, 5 or 7
 - This indicates that the temperature sensors are not working or not plugged in. They need to be plugged back in or replaced.
 - The ice machine will operate without the thermistors working, but it is limited in its diagnostics that way

- What happened if?
- The controller displays code 8
 - Freeze cycle too short less than 6 minutes
 - Excess water flowing near the ice thickness sensor
 - Incomplete harvest of previous cycle

6. Short Freeze Time

- Short freeze cycle Code 8
 - Primary cause is erratic water flow from spillway
 - Spillway surface needs scrubbing
 - Sagging bracket (02-4205-01) needs replacing – plastic from bracket sags into water path
 - Secondary cause is ice bridge too thin, ice harvests bottom half, top half stays on plate
 - Another cause is scale on the Ice
 Thickness Sensor and wire

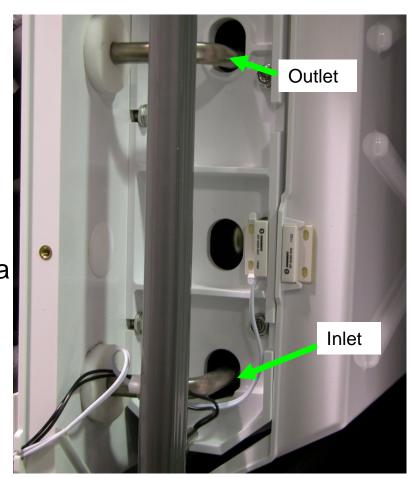

Diagnostics - Sensors

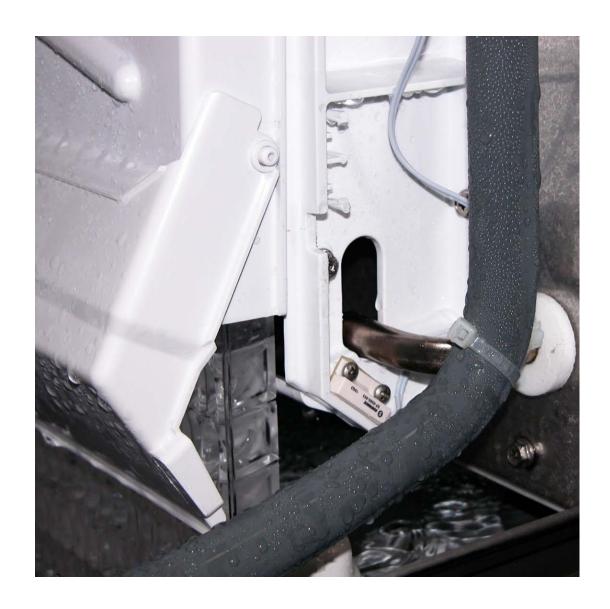
Ice thickness sensor

Short freeze may be caused by

- mis-adjusted ice thickness sensorgap 3/16 7/32
- Scale on the bridge thickness control

Code 8 - Water Flow Correction

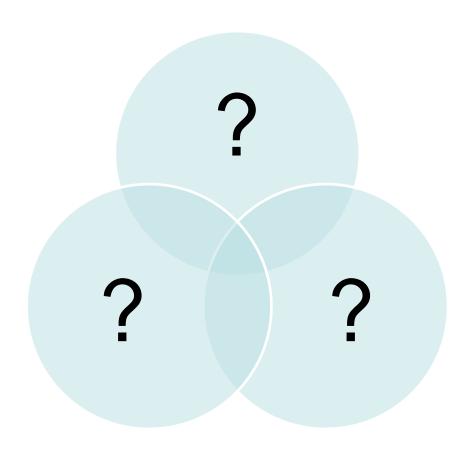

- Lightly sand or scrub the spillway across the flow of water
 - Evens out water flow
 - Reduces
 splash onto
 ice thickness
 sensor probe


Service Notes: Refrigerant Charge

- Ice machines are critically charged
- Refrigerant leak symptoms are progressive – they change as the amount of refrigerant lost increases
 - Thinner ice at evaporator area near tube outlet
 - Longer cycle times, both freeze and harvest

EH222 - New Curtain

EH222 - New Curtain



Lower Section Pivot Point

EH222 Drip Stop

Questions?

